Wait a second...
Nepřihlášený uživatel
You are here: VŠCHT PrahaFCHTSIL  → About → Staff & PhD Students → Prof. Dr. Willi Pabst

Prof. Dr. Willi Pabst

pabst_w

Teaching activities 

  • History of chemistry and materials (3h/week), for B.Sc. students (since 2012), formerly History of materials science and technology (2h/week), for B.Sc. students (2007-2012)
  • Mechanics of materials (3h/week), for M.Sc. and ERASMUS students (since 1998)
  • Technology of ceramics (5h/week), for M.Sc. and ERASMUS students (since 2006)
  • Characterization of particles and microstructures (3h/week), for M.Sc. students (since 2016), formerly Characterization of particles and particle systems (2h/week, 2007-2015) and Characterization of nanoparticles, nanocrystalline and nanoporous materials (3h/week, 2012-2015)
  • Microstructure and properties of heterogeneous materials (3h/week), for M.Sc. students (since 2016), formerly Microstructure and properties of porous materials (3h/week, 2007-2015) and Properties of heterogeneous and nanocrystalline materials (3h/week, 2012-2015)
  • Theory and characterization of disperse systems and heterogeneous materials (2h/week), for Ph.D. students (since 2007)
  • Supervision of B.Sc. theses, M.Sc. theses, Ph.D. theses, and ERASMUS projects.
  • Responsible general guarantor for the newly accredited English M.Sc. study programme “Chemistry, Technology and Materials” (since 2019).

Education and degrees

  • 1986-92: Studied mineralogy at the Institute of Mineralogy, Petrology and Geochemistry, Faculty of Geosciences, University of Tübingen / Germany
  • 1993: M.Sc. thesis in Mineralogy at the Institute of Crystallography, Faculty of Physics (German title “Dipl.-Min.“ = “Diplom-Mineraloge“), University of Tübingen / Germany
  • 1993-96: Postgraduate studies at the Department of Glass and Ceramics, Faculty of Chemical Technology, Institute of Chemical Technology in Prague (ICT Prague) / Czech Republic
  • 1998: Ph.D. thesis in Chemistry and Technology of Inorganic Materials (Czech title „Dr.“), Department of Glass and Ceramics, FCHT, ICT Prague / Czech Republic
  • 2005: Habilitation thesis in Chemistry and Technology of Inorganic Materials (Czech title „Doc.“), Department of Glass and Ceramics, FCHT, ICT Prague / Czech Republic
  • 2016: Appointed professor in Chemistry and Technology of Inorganic Materials (Czech title „Prof.“), UCT Prague / Czech Republic

Professional career

  • 1993-99: Research scientist, Department of Glass and Ceramics, ICT Prague
  • 1999-2005: Assistant professor (lecturer), Department of Glass and Ceramics, ICT Prague
  • 2006-2016: Associate professor, Department of Glass and Ceramics, ICT / UCT Prague
  • Since 2016: Full professor, Department of Glass and Ceramics, UCT Prague

Research interests, R&D activities, projects and publications 

  • Theory of heterogeneous materials (microstructure-property relations of polycrystalline, multiphase or porous materials)
  • Characterization of disperse systems (particle size and shape characterization, rheology of suspensions and pastes, viscometry and rheometry, stererology-based image analysis)
  • Ceramic science and technology (theory and practice of shaping and sintering)
  • History of chemistry, materials science and technology
  • Since 2000 main applicant in 6 national and 3 international (bilateral) projects. Author and co-author of 105 impacted journal papers, H-index 31, more than 2000 non-auto citations on the WoS.

Publications

ORCID, Scopus, WoS

Journal articles

  1. Uhlířová T., Šimonová P., Pabst W.: Modeling of elastic properties and conductivity of partially sintered ceramics with duplex microstructure and different grain size ratio, J. Eur. Ceram. Soc. 42 (6), 2946-2956 (2022). DOI: 10.1016/j.jeurceramsoc.2022.01.053
  2. Nečina V., Hostaša J., Pabst W., Veselý M.: Magnesium fluoride (MgF2) – A novel sintering additive for the preparation of transparent YAG ceramics via SPS, J. Eur. Ceram. Soc. 42 (7), 3290-3296 (2022). DOI: 10.1016/j.jeurceramsoc.2022.02.003
  3. Pabst W., Hříbalová S., Uhlířová T.: Quasi-laminate and quasi-columnate modeling of dielectric and piezoelectric properties of cubic-cell metamaterials, J. Eur. Ceram. Soc. 42 (4), 1396-1406 (2022). DOI: 10.1016/j.jeurceramsoc.2021.12.013
  4. Hříbalová S., Uhlířová T., Pabst W.: Computer modeling of systematic processing defects on the thermal and elastic properties of open Kelvin-cell metamaterials, J. Eur. Ceram. Soc. 41 (14), 7130-7140 (2021). DOI: 10.1016/j.jeurceramsoc.2021.07.031
  5. Šimonová P., Gregorová E., Pabst W.: Young’s modulus evolution during sintering and thermal cycling of pure tin oxide ceramics, J. Eur. Ceram. Soc. 41 (15), 7816-7827 (2021). DOI: 10.1016/j.jeurceramsoc.2021.08.055
  6. Šimonová P., Pabst W., Cibulková J.: Crystallite size of tin oxide ceramics and its growth during sintering determined from XRD line broadening – A methodological study and a practitioners’ guide, Ceram. Int. 47 (24), 35333-35347 (2021). DOI: 10.1016/j.ceramint.2021.09.076
  7. Pabst W., Uhlířová T.: Benchmark polynomials for the porosity dependence of elastic moduli and conductivity of partially sintered ceramics, J. Eur. Ceram. Soc. 41 (15), 7967-7975 (2021). DOI: 10.1016/j.jeurceramsoc.2021.08.028
  8. Hříbalová S., Pabst W.: Theoretical study of the influence of carbon contamination on the transparency of spinel ceramics prepared by spark plasma sintering (SPS), J. Eur. Ceram. Soc. 41 (7), 4337-4342 (2021). DOI: 10.1016/j.jeurceramsoc.2021.01.036
  9. Nečina V., Pabst W.: Grain growth of MgAl2O4 ceramics with LiF and NaF addition, Open Ceram. 5 (March), 100078 (2021). DOI: 10.1016/j.oceram.2021.100078
  10. Nečina V., Pabst W.: Transparent MgAl2O4 spinel ceramics prepared via sinter forging, J. Eur. Ceram. Soc. 41 (7), 4313-4318 (2021). DOI: 10.1016/j.jeurceramsoc.2021.02.017
  11. Gregorová E., Semrádová L., Sedlářová I., Nečina V., Hříbalová S., Pabst W.: Microstructure and Young’s modulus evolution during re-sintering of partially sintered alumina-zirconia composites (ATZ ceramics), J. Eur. Ceram. Soc. 41 (6), 3559-3569 (2021). DOI: 10.1016/j.jeurceramsoc.2021.01.045
  12. Gregorová E., Pabst W., Nečina V., Uhlířová T., Diblíková P.: Young‘s modulus evolution during heating, re-sintering and cooling of partially sintered alumina ceramics, J. Eur. Ceram. Soc. 39 (5), 1893-1899 (2019). DOI: 10.1016/j.jeurceramsoc.2019.01.005
  13. Uhlířová T., Pabst W.: Thermal conductivity and Young’s modulus of cubic-cell metamaterials, Ceram. Int. 45 (1), 954-962 (2019). DOI: 10.1016/j.ceramint.2018.09.271
  14. Uhlířová T., Pabst W.: Conductivity and Young’s modulus of porous metamaterials based on Gibson-Ashby cells, Scripta Mater. 159 (1), 1-4 (2019). DOI: 10.1016/j.scriptamat.2018.09.005
  15. Pabst W., Uhlířová T., Gregorová E., Wiegmann A.: Relative Young‘s modulus and thermal conductivity of isotropic porous ceramics with randomly oriented spheroidal pores – model-based relations, cross-property predictions and numerical calculations, J. Eur. Ceram. Soc. 38 (11), 4026-4034 (2018). DOI: 10.1016/jeurceramsoc.2018.04.051
  16. Gregorová E., Uhlířová T., Pabst W., Diblíková P., Sedlářová I.: Microstructure characterization of mullite foam by image analysis, mercury porosimetry and X-ray computed microtomography, Ceram. Int. 44 (11), 12315-12328 (2018). DOI: 10.1016/j.ceramint.2018.04.019
  17. Pabst W., Uhlířová T., Gregorová E., Wiegmann A.: Young‘s modulus and thermal conductivity of model materials with convex or concave pores – from analytical predictions to numerical results, J. Eur. Ceram. Soc. 38 (7), 2694-2707 (2018). DOI: 10.1016/j.jeurceramsoc.2018.01.0140
  18. Uhlířová T., Nečina V., Pabst W.: Modeling of Young‘s modulus and thermal conductivity evolution of partially sintered alumina ceramics with pore changes from concave to convex, J. Eur. Ceram. Soc. 38 (8), 3004-3011 (2018). DOI: 10.1016/j.jeurceramsoc.2017.12.033
  19. Pabst W., Uhlířová T., Gregorová E., Wiegmann A.: Young‘s modulus and thermal conductivity of closed-cell, open-cell and inverse ceramic foams – model-based predictions, cross-property predictions and numerical calculations, J. Eur. Ceram. Soc. 38 (6), 2570-2578 (2018).DOI: 10.1016/j.jeurceramsoc.2018.01.019
  20. Gregorová E., Pabst W., Diblíková P., Nečina V.: Temperature dependence of damping in silica refractories measured via the impulse excitation technique, Ceram. Int. 44 (7), 8363-8373 (2018). DOI: 10.1016/j.ceramint.2018.02.028
  21. Pabst W., Uhlířová T., Gregorová E.: Shear and bulk moduli of isotropic porous and cellular alumina ceramics predicted from thermal conductivity via cross-property relations, Ceram. Int. 44 (7), 8100-8108 (2018). DOI: 10.1016/j.ceramint.2018.01.254
  22. Pabst W., Uhlířová E.: A generalized class of transformation matrices for the reconstruction of sphere size distributions from section circle size distributions, Ceram. Silik. 61 (2), 147-157 (2017).
  23. Rambaldi E., Pabst W., Gregorová E., Prete F., Bignozzi M. C.: Elastic properties of porous porcelain stoneware tiles, Ceram. Int. 43 (9), 6919-6924 (2017). DOI: 10.1016/j.ceramint.2017.02.114
  24. Pabst W., Gregorová E.: A generalized cross-property relation between the elastic moduli and conductivity of isotropic porous materials with spheroidal pores, Ceram. Silik. 61 (1), 74-80 (2017).
  25. Uhlířová T., Pabst W., Gregorová E., Hostaša J.: Stereology of dense polycrystalline materials – from interface density and mean curvature integral density to Rayleigh distributions of grain sizes, J. Eur. Ceram. Soc. 36 (9), 2319-2328 (2016). DOI: 10.1016/j.jeurceramsoc.2015.12.053
  26. Pabst W., Gregorová E., Kloužek J., Kloužková A., Zemenová P., Kohoutková M., Sedlářová I., Lang K., Kotouček Miroslav, Nevřivová Lenka, Všianský Dalibor: High-temperature Young’s moduli and dilatation behavior of silica refractories, J. Eur. Ceram. Soc. 36 (1), 209-220 (2016). DOI: 10.1016/j.jeurceramsoc.2015.09.020
  27. Gregorová E., Pabst W., Uhlířová T., Nečina V., Veselý M., Sedlářová I.: Processing, microstructure and elastic properties of mullite-based ceramic foams prepared by direct foaming with wheat flour, J. Eur. Ceram. Soc. 36 (1), 109-120 (2016). DOI: 10.1016/j.jeurceramsoc.2015.09.028
  28. Pabst W., Gregorová E.: Elastic and thermal properties of porous materials – rigorous bounds and cross-property relations (Critical assessment 18), Mater. Sci. Technol. 31 (15), 1801-1808 (2015). DOI: 10.1080/02670836.2015.1114697
  29. Pabst W. Gregorová E., Rambaldi E., Bignozzi M. C.: Effective elastic constants of plagioclase feldspar aggregates in dependence of the anorthite content – a concise review, Ceram. Silik. 59 (4), 326-330 (2015).
  30. Pabst W. Gregorová E.: Minimum solid area models for the effective properties of porous materials – a refutation, Ceram. Silik. 59 (3), 244-249 (2015).
  31. Sandoval M. L., Talou M. H., Tomba Martinez A. G., Camerucci M. A., Gregorová E., Pabst W.: Starch consolidation casting of cordierite precursor mixtures – Rheological behavior and green body properties, J. Am. Ceram. Soc. 98 (10), 3014-3021 (2015).
  32. Gass S. E., Sandoval M. L., Talou M. H., Tomba Martinez A. G., Camerucci M. A., Gregorová E., Pabst W.: High-temperature mechanical behavior of porous cordierite-based ceramic materials evaluated using 3-point bending, Procedia Mater. Sci. 9C, 254-261 (2015).
  33. Pabst W., Gregorová E., Uhlířová T.: Microstructure characterization via stereological relations – a shortcut for beginners, Mater. Charact. 105 (1), 1-12 (2015).
  34. Gregorová E., Černý M., Pabst W., Esposito L., Zanelli C., Hamáček J., Kutzendörfer J.: Temperature dependence of Young’s modulus of silica refractories, Ceram. Int. 41 (1), 1129-1138 (2015).
  35. Uhlířová T., Gregorová E., Pabst W., Nečina V.: Preparation of cellular alumina ceramics via biological foaming with yeast and its microstructural characterization via stereological relations, J. Eur. Ceram. Soc. 35 (1), 187-196 (2015).
  36. Uhlířová T., Hostaša J., Pabst W.: Characterization of the microstructure of YAG ceramics via stereology-based image analysis, Ceram. Silik. 58 (3), 173-183 (2014).
  37. Pabst W., Gregorová E.: Young’s modulus of isotropic porous materials with spheroidal pores, J. Eur. Ceram. Soc. 34 (13), 3195-3207 (2014).
  38. Pabst W., Gregorová E.: Conductivity of porous materials with spheroidal pores, J. Eur. Ceram. Soc. 34 (11), 2757-2766 (2014).
  39. Pabst W., Hostaša J., Esposito L.: Porosity and pore size dependence of the real in-line transmission of YAG and alumina ceramics, J. Eur. Ceram. Soc. 34 (11), 2745-2756 (2014).
  40. Hostaša J., Matějíček J., Nait-Ali B., Smith D. S., Pabst W., Esposito L.: Thermal properties of transparent Yb-doped YAG ceramics at elevated temperatures, J. Am. Ceram. Soc. 97 (8), 2602-2606 (2014).
  41. Pabst W., Gregorová E., Kutzendörfer J.: Elastic anomalies in tridymite- and cristobalite-based silica materials, Ceram. Intern. 40 (3), 4207-4211 (2014).
  42. Pabst W., Gregorová E.: The thermal conductivity of alumina-water nanofluids from the viewpoint of micromechanics, Microfluid. Nanofluid. 16 (1-2), 19-28 (2014).
  43. Pabst W., Gregorová E., Černý M.: Isothermal and adiabatic Young’s moduli of alumina and zirconia ceramics at elevated temperatures, J. Eur. Ceram. Soc. 33 (15-16), 3085-3093 (2013).
  44. Pabst W., Gregorová E., Uhlířová T., Musilová A.: Elastic properties of mullite and mullite-containing ceramics – Part I: Theoretical aspects and review of monocrystal data, Ceram. Silik. 57 (4), 265-274 (2013).
  45. Pabst W., Gregorová E.: Elastic properties of silica polymorphs – a review, Ceram. Silik. 57 (3), 167-184 (2013).
  46. Pabst W., Hostaša J.: A closed-form expression approximating the Mie solution for the real-in-line transmission of ceramics with spherical inclusions or pores, Ceram. Silik. 57 (2), 151-161 (2013).
  47. Pabst W., Gregorová E., Malangré D., Hostaša J.: Elastic properties and damping behavior of alumina-zirconia composites at room temperature, Ceram. Int. 38 (7), 5931-5939 (2012).
  48. Hostaša J., Pabst W., Matějíček J.: Thermal conductivity of Al2O3-ZrO2 composite ceramics, J. Am. Ceram. Soc. 94 (12), 4404-4409 (2011).
  49. Pabst W., Gregorová E., Sedlářová I., Černý M.: Preparation and characterization of porous alumina-zirconia composite ceramics, J. Eur. Ceram. Soc. 31 (14), 2721-2731 (2011).
  50. Gregorová E., Pabst W.: Process control and optimized preparation of porous alumina ceramics by starch consolidation casting, J. Eur. Ceram. Soc. 31 (12), 2073-2081 (2011).
  51. Gregorová E., Pabst W., Živcová Z., Sedlářová I., Holíková S.: Porous alumina ceramics prepared with wheat flour, J. Eur. Ceram. Soc. 30 (14), 2871-2880 (2010).
  52. Živcová Z., Gregorová E., Pabst W.: Low- and high-temperature processes and mechanisms in the preparation of porous ceramics via starch consolidation casting, Starch Staerke 62 (1), 3-10 (2010).
  53. Presser V., Kohler C., Živcová Z., Berthold C., Nickel K.-G., Schultheiß S., Gregorová E., Pabst W.: Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part II. Mechanical behavior of sea urchin spine inspired porous aluminum oxide ceramics under compression, J. Bionic Eng. 6 (4), 357-364 (2009).
  54. Živcová Z., Černý M., Pabst W., Gregorová E.: Elastic properties of porous oxide ceramics prepared using starch as a pore-forming agent, J. Eur. Ceram. Soc. 29, 2765-2771 (2009).
  55. Gregorová E., Živcová Z., Pabst W.: Starch as a pore-forming and body-forming agent in ceramic technology, Starch Staerke 61 (9), 495-502 (2009).
  56. Živcová Z., Gregorová E., Pabst W., Smith D.S., Michot A., Poulier C.: Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent, J. Eur. Ceram. Soc. 29, 347-353 (2009).
  57. Gregorová E., Pabst W., Bouchet J.-B.: Influence of particle shape on the viscosity of kaolin suspensions, Acta Geodyn. Geomater. 6, 101-109 (2009).
  58. Pabst W., Kořánová R.: Prehistory of clay mineralogy – from ancient times to Agricola, Acta Geodyn. Geomater. 6, 87-100 (2009).

Books, book chapters, etc.

  1. Pabst W., Uhlířová T., Hříbalová S., Nečina V.: Rigorous bounds, model predictions and mixture rule for the effective thermal conductivity of multiphase and porous ceramics – from theory to practice, Chapter 1 (pp. 1-138) in Sohel Murshed S. M. (ed.): An Essential Guide to Thermal Conductivity (ISBN hardcover 978-1-68507-196-7). 376 pp. Nova Science Publishers, New York 2021. https://doi.org/10.52305/MSNC3801  
  2. Uhlířová T., Hostaša J., Gregorová E., Pabst W.: Characterization of ceramic materials via image analysis (Chapter IV, Section 21.13, pp. 326–332) in: Kadlec K., Kmínek M., Kadlec P. (eds.): Measurement and Control of Chemical, Food and Biotechnological Processes. Part II. Process Control (ISBN single volume 978-1-908235-10-7 / 978-80-7418-307-2, 2-volume set 978-1-908235-08-4 / 978-80-7418-305-8). 656 pp. KEY Publishing, Ostrava and STS Science Center, London 2019.
  3. Štětina J., Šárka E., Uhlířová T., Gregorová E., Pabst W., Bubník Z.: Sizing of particles, pores and porous materials (Chapter II, Section 11.1, pp. 572–590) in: Kadlec K., Kmínek M., Kadlec P. (eds.): Measurement and Control of Chemical, Food and Biotechnological Processes. Part I. Process Measurements (ISBN single volume 978-1-908235-09-1 / 978-80-7418-306-5, 2-volume set 978-1-908235-08-4 / 978-80-7418-305-8). 610 pp. KEY Publishing, Ostrava and STS Science Center, London 2019.
  4. Nečina V., Pabst W.: Electric current assisted sintering of ceramics – steps and pitfalls on the way to transparency, pp. 99-178 in Olson J. (ed.): Polycrystalline Materials – Synthesis, Performance and Applications (ISBN softcover 978-1-53613-864-1, e-book 978-1-53613-865-8). 187 pp. Nova Science Publishers, New York 2018.
  5. Pabst W., Nečina V., Uhlířová T.: Basic concepts and classical models of solid state sintering, pp. 1-64 in Olson J. (ed.): Polycrystalline Materials – Synthesis, Performance and Applications (ISBN softcover 978-1-53613-864-1, e-book 978-1-53613-865-8). 187 pp. Nova Science Publishers, New York 2018.
  6. Pabst W., Gregorová E., Uhlířová T., Nečina V.: Mechanical and thermomechanical behavior of refractories – from basic concepts to effective property calculations, pp. 33-132 in Bryant C. (ed.): Refractory Materials – Characteristics, Properties and Uses (ISBN hardcover 978-1-53613-862-7, e-book 978-1-53613-863-4). 238 pp. Nova Science Publishers, New York 2018.
  7. Uhlířová T., Hostaša J., Gregorová E., Pabst W.: Charakterizace keramických materiálů obrazovou analýzou, část IV, sekce 21.13 v knize Kadlec K., Kmínek M., Kadlec P. (eds.) a kolektiv: Měření a řízení chemických, potravinářských a biotechnologických procesů. Díl II. Řízení technologických procesů (ISBN 978-80-7418-285-3 resp. pro dvousvazkovou edici 978-80-7418-283-9). KEY Publishing, Ostrava 2017.
  8. Štětina J., Šárka E., Uhlířová T., Gregorová E., Pabst W., Bubník Z.: Měření velikosti částic, pórů a pórovitosti materiálů, část II, kapitola 11 v knize Kadlec K., Kmínek M., Kadlec P. (eds.) a kolektiv: Měření a řízení chemických, potravinářských a biotechnologických procesů. Díl I. Provozní měření (ISBN 978-80-7418-284-6 resp. pro dvousvazkovou edici 978-80-7418-283-9). KEY Publishing, Ostrava 2017.
  9. Uhlířová T., Gregorová E., Pabst W.: Direct foaming techniques for the preparation of cellular ceramics, their microstructural characterization and property-porosity relations – a review, pp. 127-158 in Newton A. (ed.): Advances in Porous Ceramics (ISBN hardcover 978-1-63485-839-7, e-book 978-1-63485-860-1). 188 pp. Nova Science Publishers, New York 2017.
  10. Pabst W., Gregorová E., Uhlířová T.: Processing, microstructure, properties, applications and curvature-based classification schemes of porous ceramics, pp. 1-52 in Newton A. (ed.): Advances in Porous Ceramics (ISBN hardcover 978-1-63485-839-7, e-book 978-1-63485-860-1). 188 pp. Nova Science Publishers, New York 2017.
  11. Pabst W., Hostaša J.: Thermal conductivity of ceramics: from monolithic to multiphase, from dense to porous, from micro to nano, pp. 1-112 in Wythers M.C. (ed.): Advances in Materials Science Research – Volume 7 (ISBN 978-1-61209-821-0). 315 pp. Nova Science Publishers, New York 2012.
  12. Pabst W., Gregorová E.: Phase Mixture Models for the Properties of Nanoceramics, 74 pp. (softcover ISBN 978-1-61668-673-4, e-book ISBN 978-1-61668-898-1). Nova Science Publishers, New York 2010.
  13. Pabst W., Gregorová E.: Phase mixture models and unit-cell calculations for the effective elastic and thermal properties of nanocrystalline ceramics, pp. 121-162 in Bartul Z., Trenor J. (eds.): Advances in Nanotechnology, Volume 3 (hardcover ISBN 978-1-61668-161-6, e-book ISBN 979-1-61761-751-5). Nova Science Publishers, New York 2010.
  14. Gregorová E., Živcová Z., Pabst W.: Porous ceramics made using potato starch as a pore-forming agent, pp. 115-127 in Tennant P., Benkeblia N. (eds.) Potato II (= Special issue of Fruit, Vegetable and Cereal Science and Biotechnology). Global Science Books Ltd., Isleworth (UK) and Miki (Japan) 2009 (ISBN 978-4-903313-26-9) = Fruit, Vegetable and Cereal Science and Biotechnology 3 (Special issue 1), 115-127 (2009) (ISSN 1752-3419).  
  15. Pabst W.: Steps across the border - from micromechanics to the properties of nanoceramics, pp. 207-228 in Tseng T.-Y., Nalwa H. S. (eds.): Handbook of Nanoceramics and Their Based Nanodevices – Volume 3 (hardcover ISBN 1-58883-114-0). American Scientific Publishers, Stevenson Ranch (California) 2009.
  16. Pabst W., Gregorová E.: Effective thermal and thermoelastic properties of alumina, zirconia and alumina-zirconia composite ceramics, pp. 77-137 in Caruta B. M. (ed.): New Developments in Materials Science Research (hardcover ISBN 1-59454-854-4). Nova Science Publishers, New York 2007.
  17. Pabst W., Gregorová E.: Effective elastic moduli of alumina, zirconia and alumina-zirconia composite ceramics, pp. 31-100 in Caruta B. M. (ed.): Ceramics and Composites: New Research (hardcover ISBN 1-59454-370-4, e-book ISBN 978-1-60876-508-9). Nova Science Publishers, New York 2006.
Updated: 23.6.2022 15:12, Author: Tereza Unger Uhlířová

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2015
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre.
switch to mobile version